Hybridization of Evolutionary Algorithms
نویسندگان
چکیده
Iztok Fister,∗ Marjan Mernik,† and Janez Brest‡ Abstract Evolutionary algorithms are good general problem solver but suffer from a lack of domain specific knowledge. However, the problem specific knowledge can be added to evolutionary algorithms by hybridizing. Interestingly, all the elements of the evolutionary algorithms can be hybridized. In this chapter, the hybridization of the three elements of the evolutionary algorithms is discussed: the objective function, the survivor selection operator and the parameter settings. As an objective function, the existing heuristic function that construct the solution of the problem in traditional way is used. However, this function is embedded into the evolutionary algorithm that serves as a generator of new solutions. In addition, the objective function is improved by local search heuristics. The new neutral selection operator has been developed that is capable to deal with neutral solutions, i.e. solutions that have the different representation but expose the equal values of objective function. The aim of this operator is to directs the evolutionary search into a new undiscovered regions of the search space. To avoid of wrong setting of parameters that control the behavior of the evolutionary algorithm, the self-adaptation is used. Finally, such hybrid selfadaptive evolutionary algorithm is applied to the two real-world NP-hard problems: the graph 3-coloring and the optimization of markers in the clothing industry. Extensive experiments shown that these hybridization improves the results of the evolutionary algorithms a lot. Furthermore, the impact of the particular hybridizations is analyzed in details as well. To cite paper as follows: Iztok Fister, Marjan Mernik and Janez Brest (2011). Hybridization of Evolutionary Algorithms, Evolutionary Algorithms, Eisuke Kita (Ed.), ISBN: 978-953-307-171-8, InTech, Available from: http://www.intechopen.com/books/evolutionary-algorithms/hybridizationof-evolutionary-algorithms
منابع مشابه
A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملHybridization of Cuckoo Search and Firefly Algorithms to Calculate the Interaction Parameters in Phase Equilibrium Modeling Problems
Liquid-liquid equilibrium (LLE) problems such as phase stability analysis, phase equilibrium calculations, chemical equilibrium calculations, binary interaction parameter identification of thermodynamic models and other problems of fluid characterization have been the core subject of many recent studies. This study introduces Cuckoo Search (CS), Firefly Algorithms (FA) and its variants as p...
متن کاملEstimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملOPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1301.0929 شماره
صفحات -
تاریخ انتشار 2011